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a b s t r a c t

A viscoplastic approach using the Fast Fourier Transform (FFT) method for obtaining local
mechanical response is utilized to study microstructure–property relationships in compos-
ite materials. Specifically, three-dimensional, two-phase digital materials containing iso-
tropically coarsened particles surrounded by a matrix phase, generated through a Kinetic
Monte Carlo Potts model for Ostwald ripening, are used as instantiations in order to calcu-
late the stress and strain-rate fields under uniaxial tension. The effects of the morphology
of the matrix phase, the volume fraction and the contiguity of particles, and the polycrys-
tallinity of matrix phase, on the stress and strain-rate fields under uniaxial tension are
examined. It is found that the first moments of the stress and strain-rate fields have a dif-
ferent dependence on the particle volume fraction and the particle contiguity from their
second moments. The average stresses and average strain-rates of both phases and of
the overall composite have rather simple relationships with the particle volume fraction
whereas their standard deviations vary strongly, especially when the particle volume frac-
tion is high, and the contiguity of particles has a noticeable effect on the mechanical
response. It is also found that the shape of stress distribution in the BCC hard particle phase
evolves as the volume fraction of particles in the composite varies, such that it agrees with
the stress field in the BCC polycrystal as the volume of particles approaches unity. Finally, it
is observed that the stress and strain-rate fields in the microstructures with a polycrystal-
line matrix are less sensitive to changes in volume fraction and contiguity of particles.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known in Materials Science that the properties of materials are a function of their microstructural parameters. In
studying microstructure–property relationships, it is crucial to map the microstructural parameters obtained from materials
characterization to the desired materials property. Conventionally, materials characterization is based on data obtained from
two-dimensional plane sections because of the opacity of most crystalline materials. However, many problems related to the
properties of materials are three-dimensional in nature (Becker and Panchanadeeswaran, 1995; Lin et al., 1995; Patton et al.,
1998; Shan and Gokhale, 2001; Suresh, 1998) because most materials of technological relevance have a polycrystalline or
multi-phase structure with significant complexity in the spatial arrangement of their microstructural units. Even though
stereology (Underwood, 1970) can be used to deduce the three-dimensional microstructure from conventional
two-dimensional characterization, its statistical approach inevitably requires various spatial and morphological assumptions
about the structural units. For example, even though the contiguity of particles can be easily measured in two-dimensional
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sections, it is hard to deduce three-dimensional particle contiguity from those two-dimensional observations without signif-
icant assumptions about particle shapes and spatial distribution.

In order to estimate three-dimensional microstructural features of materials directly, one can use the serial-sectioning
methods (Morawiec and Saylor, 1999; Rollett et al., 2007; Rowenhorst et al., 2006a,b; Saylor et al., 2002; Saylor et al.,
2004; Tewari and Gokhale, 2001; Uchic et al., 2006). While this approach gives actual data on various microstructural param-
eters, one might need to reconstruct a number of samples of materials in order to use them as inputs for three-dimensional
microstructure–property relationship studies, depending on the microstructural scale. In addition, in order to assess the
effect of the individual microstructural parameters on the desired property, the samples must be prepared before the recon-
struction process such that a specific microstructural feature is well controlled while the others remain constant. Naturally,
this is difficult to perform and inefficient.

Alternatively, numerical simulations can be used for studying microstructure–property relationships. Especially for com-
posite materials, unit cell models, solved numerically by means of the finite element method, have been used to calculate
elastic and/or plastic behaviors of two-phase composites in either two- or three-dimensions (Chawla et al., 2006; Chawla
and Chawla, 2006; Khatam and Pindera, 2009; Llorca et al., 1991; Shen et al., 1994). However, in these analyses, the geom-
etry of the particles is assumed to be rather simple, and the representative unit cell is not able to capture the real microstruc-
tural complexities, which makes it hard to compare the results directly to the experimental observations. Also, such simple
unit cell models are not capable of explaining the long-range effect of the complex morphology of the matrix on the mechan-
ical response of the materials.

In order to overcome these limitations, a microstructure-based modeling combined with serial sectioning has been em-
ployed to investigate the deformation behavior of particle-reinforced composites (Chawla et al., 2006; Chawla and Chawla,
2006). In these studies, the predictions of stress–strain relations under uniaxial tension from various types of microstruc-
tures (three-dimensional microstructures from serial sectioning, unit cell models with spherical, ellipsoidal or rectangular
prismatic particles, and three-dimensional microstructures with spherical or ellipsoidal multi-particles) were compared
to the result from experiments. It was found that the result from three-dimensional microstructure-based finite-element
model using serial-sectioning method matches well with the experimental findings in terms of stress–strain curve since
the shape and spatial distribution of the second phase particles in the reconstructed microstructures are not arbitrarily
assumed and modified. One interesting result, however, was that the plastic strain distribution from two-dimensional
finite-element modeling is different from that in the two-dimensional section of the three-dimensional reconstructed micro-
structure-based one (Chawla et al., 2004; Chawla and Chawla, 2006) such that the regions in the matrix where the particles
are sparsely spaced in the sections of the three-dimensional microstructure do not always experience the high plastic strain
while it seemed to be always true in the two-dimensional modeling. In many numerical simulation studies on two/three-
dimensional particle-reinforced composites, including the works mentioned so far, the first moments of the effective
mechanical fields (stress vs. elastic/plastic strain behavior) has been extensively analyzed with or without the consideration
of microstructural effect on the mechanical fields (for example, for a study involving the Method of Cells (Uniform Plastic
and/or Transformation Field Analysis), see Liu and Hu (2005); for finite volume element methods using none-uniform plastic
strain field, see Bansal and Pindera (2006) and Khatam and Pindera (2009); for a mean-field homogenization model and its
validation against the FE results, see Mercier and Molinari (2009), Pierard et al. (2007a), Sun et al. (2009) and Vena et al.
(2008)). Also, there are several numerical studies on the mechanical response of the three-dimensional composite materials
in terms of both the first and/or second moment analysis (González et al., 2004; LLorca and Segurado, 2004; Pierard et al.,
2007a,b; Segurado and LLorca, 2005). Here we use the FFT-based method to investigate the mechanical response of
composite materials as a function of the microstructural parameters such as the volume fraction, the average size and the
contiguity of particles, spatial orientations of two phases and the polycrystallinity of the matrix phase.

Given the facts, issues and goals mentioned above, one way to meet the above challenges might be as follows: (1) develop
numerical methods to generate hypothetical digital composite microstructures of whose representativeness can be validated
by comparison with the available experimental data; (2) measure the three-dimensional microstructural parameters of
those hypothetical composite microstructures; and (3) use them as input for property simulation. Having measured the
microstructural parameters from a representative three-dimensional digital microstructure, a property simulation model
can be used to evaluate which combination of the microstructural parameters results in the desired mechanical state of
the material for a given external load. In this work, we examine the stress and strain-rate distributions in hypothetical com-
posite microstructures under uniaxial tension, while varying certain microstructural parameters.

To do this, we use the Fast Fourier Transform (FFT)-based algorithm of Suquet and co-authors (Michel et al., 2000;
Moulinec and Suquet, 1994, 1998). We note that, while the use of Fourier Transforms of Green functions was proposed
by other authors, e.g. Walker and co-authors (Cheng et al., 1997; Grabowski et al., 1994; Walker et al., 1990a,b, 1993) to solve
the problem of periodic linear composite materials, Suquet et al.’s methodology, used here to calculate the mechanical prop-
erties of materials based on voxelized microstructural data, is not limited to linear behaviors. Moreover, while Suquet et al.
originally developed the method to calculate the mechanical behavior of two-phase isotropic composites, Lebensohn and
co-authors (2001, 2008, 2009) applied this scheme to obtain the local response of the anisotropic polycrystals in the context
of viscoplasticity. The FFT-based formulation provides an accurate full-field solution of the governing equations (within the
limitations imposed by the unavoidable discretization of the problem and the lack of a conformal representation of grain
boundaries) and is used here to calculate the rigid-viscoplastic response of composite materials with fixed microstructures.
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Concerning the latter choice, we should remark that this paper is intended to examine the effect of the composite micro-
structure on the viscoplastic response without the complicating factor of work hardening, which tends to modify the
distribution of strain-rate and stress, sometimes strongly. Also, the elastic response is quite likely to be sensitive to micro-
structural parameters, but we assume that the composites have been already subjected to enough plastic deformation so
that the effect of elastic heterogeneities can be neglected. Moreover, it should be acknowledged that the use a voxelized
image of the microstructure instead of a discretization conforming to grain and/or phase boundaries involves some of level
of inaccuracy, especially in the determination of field values near these boundaries. However, these numerical errors die out
in the bulk of grains or phases, and tend to be averaged out when per-phase or effective mechanical responses are calculated
(e.g. see Siddiq Qidwai et al., 2009; Kanit et al., 2003), which constitute most of the output of our simulations in this work.

The scope of our study is apply the FFT-based methodology to digitally generated two-phase composite materials, having
an ensemble of isotropically coarsened particles wetted by a matrix phase (Lee et al., 2007) and apply uniaxial tension to
them to explore their local response in terms of stress and strain-rate fields. The local heterogeneity is due to both particles
and matrix phase being anisotropic with their stress–strain behavior given by the rate-sensitivity approach to crystal plas-
ticity. The actual material that motivated this investigation is a liquid-phase sintered W–Ni–Fe, which has nearly pure W
particles in a Ni–Fe based matrix, which also has some W dissolved in it (Fang and Patterson, 1993; Park et al., 1989; Tewari
and Gokhale, 2001). Accordingly, isotropically coarsened particles in the simulated microstructures are assigned properties
compatible with the harder body-centered cubic (BCC) structure with random orientations while the matrix phase is as-
signed properties associated with the softer face-centered cubic (FCC) structure.

The plan of the paper is as follows. In Section 2, we briefly review the numerical procedure for generating digital com-
posite materials and define the microstructural parameters of interest. In Section 3, we discuss the FFT viscoplasticity model
as applied to composite materials. In Section 4, we investigate the relationship between the microstructural parameters and
the predicted stress and strain-rate fields. Finally, in Section 5, we close with some concluding remarks.

2. Preparation of input digital composite materials for property simulation

2.1. Generation of three-dimensional digital composites using Monte Carlo Potts model

A complete description of the simulations of Ostwald ripening (Lifshitz and Slyozov, 1961; Ostwald, 1900) used to gen-
erate three-dimensional digital composite microstructures containing an ensemble of isotropically coarsened particles with
size variation, surrounded by a fully-wetting matrix phase has been described in detail elsewhere (Lee et al., 2007). Accord-
ingly, here we only highlight a few essential results of that work, in which it was reported that: (1) a fully-wetting condition
by matrix phase is verified by observing the compact shape of the individual particles and the percolating spatial distribution
of the matrix phase; (2) the final particle size distribution as a function of both volume fraction of particles and initial par-
ticle size distribution is in good agreement with typical ones found in experiments and it attains a statistical steady-state;
and (3) the associated kinetics are consistent with theories of Ostwald ripening (Lifshitz and Slyozov, 1961; Ostwald, 1900).

During coarsening simulation, the matrix phase is defined as a collection of voxels with a same ‘‘spin” number, in order to
represent the surrounding liquid medium through which the solid voxels can diffuse, making the ensemble of particles
evolve. In that context, the matrix phase can be treated as a single crystal. In reality, however, the matrix phase after
liquid-phase sintering is polycrystalline at room temperature. Based on our ability to generate ensembles of isotropically
coarsened particles that are representative of those in real composite systems from Ostwald ripening, we also generated
a polycrystalline matrix in each microstructure. For simplicity, the Monte Carlo isotropic grain growth model (Anderson
et al., 1985, 1989; Srolovitz et al., 1983) was adopted to generate a polycrystalline matrix while the particles from coarsening
simulation remain intact. Fig. 1 shows the particles ((a) and (b)) from coarsening simulation, the corresponding single crystal
matrix ((c) and (d)), and polycrystalline matrix ((e) and (f)), for the particle volume fractions of �0.2 and �0.6. It is evident
that the matrix has a percolating morphology due to the complete wetting condition imposed during coarsening simulation.
Note also that, as the particle volume fraction increases, the grain shape in the matrix changes from a nearly equiaxed shape
(Fig. 1(e)) to an elongated one with branches between particles (Fig. 1(f)).

2.2. Microstructural parameters

2.2.1. Volume fraction of particles (Vp)
While the composition of composite materials is typically expressed in the literature in weight-percent, for numerical

simulations it is more directly expressed in terms of volume fraction. Also, the volume fraction of each phase is considered
to be one of the crucial factors for determining equilibrium shapes and mechanical properties of sintered materials (German,
1998; Kim, 2004; Ratke and Voorhees, 2002). The volume fraction of particles, Vp, in the digital composite microstructure is
defined as

Vp ¼ Np=Ntotal ð1Þ

where Np and Ntotal are the number of voxels of particles and the total number of voxels in the simulation domain.
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2.2.2. Contiguity of particles (Cp)
If the volume fraction of particles during the coarsening process is high, it is inevitable that particles in the system will

contact each other, causing their shapes to be distorted from spheres (Lee et al., 2007; Park et al., 1989; Rowenhorst et al.,
2006a). Suppose we have two systems with the same number of particles and a similar particle size distribution, but with
different volume fractions of particles. Then, it is intuitively reasonable to predict that the system with a higher volume frac-
tion of particles has a greater chance that the particles are in contact with each other. Therefore, as the volume fraction of
particles increases, we can expect that particle morphologies change both locally and globally such that the particles tend to
form flat facets at the boundary regions and that they tend to develop a percolating skeletal structure within the system.
Since morphological change of composite materials can strongly affect their properties, the degree of contact between par-
ticles in composite materials is an important microstructural parameter in predicting their properties.

Fig. 1. (a) Particles from the coarsening simulation with volume fraction of �0.2; (b) volume fraction of �0.6 and the corresponding morphologies of the
single crystal matrix, (c) and (d); and polycrystal matrix, (e) and (f). The particles and matrix grains are gray-scaled according to an arbitrary numbering
scheme; the banding in color is only an artifact of the spatially progressive numbering.
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In fact, the contiguity of particles in liquid-phase sintered materials has been well recognized as an important factor influ-
encing the properties of materials such as hardness, fracture toughness and strength in tungsten carbides (WC) in cobalt (Co)
binder (Kim, 2004), thermal and electrical conductivity (Jernot and Chermant, 1982; Matsushita et al., 1977), and ductility
(Churn and German, 1984) of liquid-phase sintered materials. In particular, observation of the fracture surfaces of tungsten
heavy alloys (W–Ni–Fe) revealed that the direct contact regions between tungsten particles were weaker than the other
interphase bonding regions and, hence, at low strain-rate, cracks propagated along the contacting regions between tungsten
particles (Churn and German, 1984).

The degree of contact between particles in composite materials can be measured by defining the contiguity of particles.
The contiguity of particles, Cp, is defined as the ratio of the boundary area between particles, Aboundary, to the total surface area
of the particles, Asurface (German, 1985; Gurland, 1966; Kim, 2004). Then, the contiguity of particles is defined as the average
fraction of particle/particle boundary area per particle in the system with values ranging from 0 to 1

Cp ¼ 2Aboundary=Asurface ð2Þ

In a simulated two-phase, composite microstructure, the contiguity of particles can be calculated as

Cp ¼ Nboundary=Nsurface ð3Þ

where Nboundary is the number of voxels at a particle/particle interface and Nsurface is the total number of surface voxels for all
particles.

3. Property simulation method

The FFT-based formulation for viscoplastic polycrystals used in this work for property simulation is conceived for periodic
unit cells, provides an ‘‘exact” solution (within the limitation imposed by the unavoidable discretization of the problem) of
the governing equations. The viscoplastic FFT-based formulation consists in finding a strain-rate field, associated with a kine-
matically-admissible velocity field, which minimizes the average work-rate, under the compatibility and equilibrium con-
straints. The method relies on the fact that the local mechanical response of a periodic heterogeneous medium can be
calculated as a convolution integral between the Green function of a linear reference homogeneous medium and a polariza-
tion (heterogeneity) field. Since convolution integrals reduce to a simple product in Fourier space, the FFT algorithm can be
used to transform the Green function and the polarization field into Fourier space and, in turn, to get the mechanical fields by
anti-transforming the product of this two quantities back to real space. Given that the actual polarization depends precisely
on the a priori unknown mechanical fields, an iterative scheme should be implemented to obtain, upon convergence, a com-
patible strain-rate field and an equilibrated stress field. The FFT-based formulation has been thoroughly presented several
times elsewhere (Lebensohn, 2001; Lebensohn et al., 2008, 2009; Michel et al., 2000; Moulinec and Suquet, 1994, 1998),
and, in particular, the specialization to viscoplastic polycrystals can be found in Lebensohn and coworkers’ works (2001,
2008, 2009). In addition, various aspects of the method have been verified to compute the correct results, including a vali-
dation against an exact analytical result, for the case of antiplane shear of an isotropic and heterogenous medium (Lebensohn
et al., 2005, in press). Concerning validation against experimental findings, Lebensohn et al. (2008) established that orienta-
tion spreads within individual grains was accurately captured by the FFT-based model. Moreover, Prakash and Lebensohn
(2009) found good agreement between the FFT method and finite element calculations for polycrystals, at small fraction
of the FE computation time. Therefore, in what follows we are giving just some key expressions of the method. The interest
reader is referred to previous works, for further details.

The periodic unit cell representing the two-phase polycrystalline composite is discretized by means of a regular grid fxdg,
which in turn determines a corresponding grid of the same dimensions in Fourier space fndg An average strain-rate _Eij is
imposed to the unit cell and the response to this mechanical solicitation, in terms of stress and strain-rate fields, has to
be determined. The local constitutive equation that relates the deviatoric stress r0ijðxÞ and the strain-rate _eijðxÞ ¼
1
2 ðv i;jðxÞ þ v j;iðxÞÞ (vi(x): velocity field) at any given point x of the two-phase polycrystalline composite is assumed to be given
by the crystal plasticity rate-sensitivity equation:

_eijðxÞ ¼ _co

XNs

s¼1

ms
ijðxÞ

jmsðxÞ : r0ðxÞj
ssðxÞ

� �n

sgnðmsðxÞ : r0ðxÞÞ ð4Þ

where ms
ij and ss are, respectively, the Schmid tensor and the threshold stress of slip system (s); n is the rate-sensitivity

exponent, _co is reference shear-rate and Ns the number of slip systems potentially active in the single crystal. The parameters
ss, n and Ns depend on the phase to which the material point belongs, and ms

ij also depends on the particular crystallographic
orientation associated to that point.

With p(x) being the hydrostatic pressure field, the Cauchy stress field can be written as:

rijðxÞ ¼ Lo
ijkl

_eklðxÞ þuijðxÞ � pðxÞdij ð5Þ

where the polarization field /ij(x) given by:

uijðxÞ ¼ r0ijðxÞ � Lo
ijkl

_eklðxÞ ð6Þ
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where Lo is the stiffness of a linear reference medium. Combining Eq. (6) with the equilibrium and the incompressibility con-
ditions gives:

Lo
ijklvk;ljðxÞ þuij;jðxÞ � p;iðxÞ ¼ 0

vk;kðxÞ ¼ 0

����� ð7Þ

The system of differential Eq. (7), with periodic boundary conditions across the unit cell boundary, can be solved by
means of the Green function method. If Gkm is the periodic Green functions associated with the velocity field, the solution
of system (7) for this field is a convolution integral between the corresponding Green function and the polarization field.
Taking derivatives and symmetrizing, the strain-rate field is given by:

_eijðxÞ ¼ _Eij þ FT�1 Ĉsym
ijkl ðnÞûklðnÞ

n o
ðxÞ ð8Þ

where Csym
ijkl ¼ symðGik;jlÞ and FT�1 indicates inverse Fourier transform. The tensors ĜijðnÞ and Ĉsym

ijkl ðnÞ are only functions of Lo

and can be readily obtained for every point belonging to {nd} (for details, see Lebensohn et al., 2008). Having current guess
values of the strain-rate field in the regular grid {xd} and computing the corresponding stress field from the local constitutive
relation (Eq. (4)) allow us to obtain a guess for the polarization field in direct space /ij(xd) (Eq. (6)), from which, by applica-
tion of FFT, ûijðndÞ can be readily calculated. An improved guess for the strain-rate field in {xd} can be then obtained with Eq.
(8), etc. The actual iterative procedure used in the viscoplastic present case requires the application augmented Lagrangians
algorithm (Michel et al., 2000) that guarantees that the converged stress and strain-rate fields fulfill equilibrium and com-
patibility, respectively (see works by Lebensohn et al. (2008) and Michel et al. (2000) for details).

At this point, it is necessary to mention some additional assumptions made for the property simulations that follow. As
previously mentioned, the input microstructures from coarsening simulations have voxelized data with periodic boundary
conditions. So, we can use directly the resulting digital composite microstructures as input for the property simulation. In all
subsequent property simulations, stress and strain-rate fields are calculated for uniaxial tension. The following conditions
are consistently imposed: (1) the number of Fourier grid points coincide with the number of voxels of the input microstruc-
tures; (2) each particle is a single BCC crystal with a randomly chosen orientation, so that the ensemble of the BCC particles
has a nearly random texture; (3) the matrix is considered to be a solid consisting of either a single FCC crystal (case of micro-
structures shown in Fig. 1(c) and (d)) with an orientation (in Bunge angles) given by (u1, U, u2) = (0�, 0�, 0�) (known as the
‘‘cube” orientation), or an FCC polycrystal with a random texture (case of Fig. 1(e) and (f)); (4) the threshold resolved shear
stress (i.e. ss in Eq. (4)) of the BCC phase associated with the 12 {1 1 0}h1 1 1i and the 12 {1 1 2}h1 1 1i potentially active slip
systems is set to be 1.0 in arbitrary units (a.u.); and (5) the yield stress that BCC particle phase would have if it would fill the
entire unit cell is set to be twice the yield stress of the FCC matrix phase (amounting to introduce a contrast factor X = 2 be-
tween the phases). Under this condition, the threshold stress of the 12 {1 1 1}h1 1 0i slip systems in FCC crystal is found to be
0.554 in arbitrary units. This threshold stress is also used when the matrix is polycrystalline in order to assess the effect of
polycrystallinity of matrix on the overall mechanical response of the material.

As an illustration of the property simulation methodology, consider a simulation on a 128 � 128 � 128 system from the
coarsening simulation with 128 � 128 � 128 Fourier grid points. For the present simulations with 128 � 128 � 128
(=2,097,152) Fourier points, it typically takes 8–10 h to obtain stable solutions for the stress and strain-rate fields, in a com-
puter with 1.25 GHz CPU and 4 Gigabytes of RAM. These simulations require around 200 iterations to reach a relative error
(which quantifies how far the solution is from fulfillment of equilibrium) of the order of 10–5. One cross-section of the
microstructure and the corresponding stress and strain-rate field sections are shown in Fig. 2. Note that the highest
strain-rate values are found in the matrix phase, following 45� paths, which are soft shear planes in the FCC crystal with
the cube orientation. Hot spots in strain-rate are located either along boundaries or at interstices between particles. In gen-
eral, for the assumed phase contrast, the stress is concentrated in the particle phase while the matrix phase experiences hea-
vy deformations. In the following sections, we will show that the stress and strain-rate distributions are strongly affected by
the microstructural parameters.

4. Results

4.1. Effect of morphology of phases on stress and strain-rate fields

4.1.1. Coarsened vs. ‘‘disordered” microstructures
In order to examine the effect of the morphology of the microstructure on the distributions of stress and strain-rate under

uniaxial tension, two different microstructures were prepared as shown in Fig. 3. Fig. 3(a) shows a microstructure from the
Monte Carlo coarsening simulation with a prescribed solid volume fraction of �0.6 (the exact volume fraction of solid voxels
after the cleaning process was 0.5982) while Fig. 3(b) shows a ‘‘disordered” polycrystal (a single-phase polycrystal obtained
from the Monte Carlo isotropic grain growth simulation), within which grains are randomly selected (hence, the designation
as ‘‘disordered”) and assigned to be the matrix phase (soft FCC crystal with the ‘‘cube” orientation) so that the volume
fraction of the remaining hard BCC grains is approximately 0.6 (the exact volume fraction of the BCC grains left is
0.5988). Also, in order to minimize the effect of the variation of other microstructural features on the simulation results,

712 S.-B. Lee et al. / International Journal of Plasticity 27 (2011) 707–727



Author's personal copy

the microstructures were selected such that the numbers of hard BCC particles in both microstructures (hence, the average
volume of those particles) were similar (see Table 1) and they were assigned the same set of random orientations. In both
Fig. 3(a) and (b), the matrix was omitted for a better visualization of the difference in overall morphologies of two micro-
structures. Note that the ‘‘disordered” polycrystalline microstructure, Fig. 3(b), has a higher contiguity of particles, due to
the flat boundaries between grains, than the coarsened microstructure, Fig. 3(a), while the matrix phase in the coarsened
microstructure is fully percolating throughout the system (see also Fig. 1(c) and (d)) as opposed to the ‘‘disordered” micro-
structure where matrix phase actually forms isolated second phase regions and the particle phase is almost fully percolating
as clusters.

After simulations were performed on both microstructures shown in Fig. 3, the average macroscopic stress �rVM
macro of the

composite microstructure and the relative activity v in both particle phase and matrix phase were calculated using the fol-
lowing equations:

�rVM
macro ¼

XN

i¼1

rVM
i

 !,
N ð9Þ

vparticle ¼
XP

j¼1

_eVM
j

 !, XN

i¼1

_eVM
i

 !
ð10Þ

vmatrix ¼
XN�P

k¼1

_eVM
k

 !, XN

i¼1

_eVM
i

 !
ð11Þ

where N is the total number of the Fourier grid points, P is the number of Fourier grid points assigned to the particle phase,
rVM

i is the von Mises stress at the ith Fourier point and _eVM
i is the von Mises strain-rate at the corresponding Fourier point.

Since the total number of the voxels in either microstructure is equal to the total number of Fourier points N, then P and
(N � P) are proportional to the volumes of the particles and the matrix, respectively. The relative activity v can be interpreted
as the ratio of the strain-rate carried by each phase, relative to the total strain-rate.

While the difference in the macroscopic average stresses for the two microstructures is small, i.e. �rmacro of the ‘‘disor-
dered” polycrystalline microstructure is larger by about 9% compared to that of the coarsened microstructure (1.893 for
the coarsened microstructure and 2.061 for the ‘‘disordered” microstructure), the relative strain-rate activities of the two
phases in the different microstructures are quite different. While vmatrix of the ‘‘disordered” microstructure is 0.433, vmatrix

of the coarsened microstructure is 0.595 (37% increase), which means that the matrix phase in the coarsened microstructure
takes up a larger fraction of the total strain-rate in the system. This is due to the particular morphology of the coarsened
microstructure. As mentioned before, the matrix phase in the coarsened microstructure is percolating throughout the system
and hence develops thin channels between the particles (fully-wetting condition). The results from these simulations are
also summarized in Table 1.

4.1.2. Variation in relative activity with particle volume fraction
Let us now examine how the mechanical responses of the above two microstructures vary with the volume fraction of

particles. For that, we generated two types of microstructures (coarsened and ‘‘disordered”) with volume fraction of particles

Fig. 2. Cross-sections through a representative 3D simulation showing (a) the input microstructure with particles gray-scaled arbitrarily (and the matrix
omitted); (b) stress field, and (c) strain-rate field (in a.u.). The arrows indicate the direction of applied uniaxial tension. Note that the stress and strain-rate
fields are inhomogeneous, both because of the imposition of the contrast factor between two phases (factor of two in flow stress) and the local
heterogeneity of the microstructure.
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Fig. 3. Two contrasting microstructures used for instantiation of the simulations: (a) a microstructure from the coarsening simulation with particle volume
fraction of �0.6; (b) a modified single-phase polycrystal (‘‘disordered” microstructure) wherein about 40 vol% of grains have the properties of the matrix
phase. (c) and (d) are the corresponding stress fields, and (e) and (f) are the strain-rate fields from the simulation of uniaxial tension in the coarsened and
modified polycrystal microstructures, respectively (each of stress and strain-rate scale bars is shown only once). Note the drastic difference in morphologies
of two microstructures and its effect on stress and strain-rate fields. The arrows indicate the direction of applied uniaxial tension.

Table 1
Results from the property simulation on both the coarsened microstructure (Fig. 3(a)) and the ‘‘disordered” microstructure (Fig. 3(b)). Note that the difference
in morphologies of two microstructures has a drastic influence on relative activities of the two phases.

Coarsened microstructure Disordered microstructure

Particle Matrix Particle Matrix

# Particles 2029 2041
Avg. vol. particles 618.32 (in voxel) 702.27 (in voxel)
Particle contiguity 0.2164 0.7987
Volume fraction 0.5982 0.4018 0.5988 0.4012
Macroscopic stress of the composite 1.893 (in a.u.) 2.061 (in a.u.)
Relative activity 0.405 0.595 0.567 0.433
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in the range of �0.6, �0.7 and �0.8. For each volume fraction, the number (hence, the average volume) of particles in both
types of microstructures is similar (see Table 2) and the particles are assigned with the same set of random orientations. Like
before, the soft FCC matrix has the single ‘‘cube” orientation for both types. Fig. 4 shows the variation of the relative activity
v of each phase as a function of volume fraction of particles. Thick and thin solid lines are the ideal relative activities of par-
ticle phase and matrix phase, respectively, if the material is assumed to have phase contrast X = 1 (i.e., if, in average, the two
phases have no distinction in terms of mechanical response). Also, one can construct the same ideal lines for each phase
when X = 2 (thick and thin dashed lines), assuming that the matrix phase takes exactly twice the strain-rate than the par-
ticles. For both microstructures, the matrix phase takes up more strain-rate than the particle phase per unit volume while
the matrix in the coarsened microstructure experiences a larger concentration of strain-rate than in the ‘‘disordered” micro-
structure. Note that the relative activity of the matrix phase in the coarsened microstructure (solid triangles) tends to
exceeds the estimate for X = 2 (thin dashed line) as the particle volume fraction decreases while that in the ‘‘disordered”
microstructure (open triangles) experiences much smaller strain-rates, close the ideal case for X = 1 (thin solid line). Again,
because of the fully-wetting condition during the coarsening simulation, the percolating matrix in the coarsened microstruc-
ture develops thin channels between the particles, which makes it accommodate more deformation than the localized
matrix phase in the ‘‘disordered” microstructure. As expected, in all cases, the relative activity of each phase converges to
a single value as the volume fraction of particles approaches unity.

4.2. Microstructures from the Monte Carlo Potts coarsening model

This section analyzes the stress and strain-rate fields developed in the microstructures obtained from the Monte Carlo
coarsening simulations when uniaxial tension is applied. First, the effect of the volume fraction of particles on the distribu-
tions of the stress and strain-rate is examined. Second, the effect of other microstructural parameters on the mechanical
response is explored by comparing the results from property simulations using input microstructures with different number
and contiguities of particles, while the volume fraction of particles remains fixed. Third, the evolution of the stress distribu-
tion in the hard BCC particles is examined as a function of the particle volume fraction. Finally, the effect of the polycrystal-
linity of matrix on the stress and strain-rate distributions is studied by comparing the results with those from
microstructures where the matrix was a single crystal with the ‘‘cube” orientation.

In the following sections, the average stress and strain-rate in both phases and in the entire composite microstructure are
calculated using the following equations:

Table 2
The total number, the average volume and the contiguity of particles in both microstructures used as input for property simulations in terms of the volume
fraction of particles. Note that ‘‘disordered” polycrystals have a much higher particle contiguity than the coarsened microstructures with fixed particle volume
fraction and similar average volume of particles.

Coarsened microstructure Disordered polycrystal

Particle volume fraction 0.6 0.7 0.8 0.6 0.7 0.8
# Particles 4058 4010 2406 4068 4418 2683
Avg. vol. particles 618.32 730.70 1393.43 698.61 704.80 1341.5
Particle contiguity 0.2164 0.3786 0.5017 0.7955 0.8426 0.8805

Fig. 4. Comparison of the variation of the relative activity of each phase as a function of volume fraction of particles in both coarsened microstructure and
modified polycrystal. Note a significant offset in the relative activity for each phase between the ‘‘disordered” and the coarsened microstructures. Also, the
results are compared to two ideal cases when the contrast factor X = 1 and 2 (solid and dashed lines, respectively). Note the drastic effect of morphology of
the matrix phase on the relative activity of each phase such that the matrix phase in the coarsened microstructure (solid triangles) takes up more strain
than the ideal case for X = 2 (thin dashed line) as the particle volume fraction decreases while that in the ‘‘disordered” microstructure (open triangles)
experiences much smaller deformation close the ideal case for X = 1 (thick solid line).
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4.2.1. Effect of volume fraction of particles on stress and strain-rate fields in coarsened microstructures
In this section, we consider the effect of varying the volume fraction while holding all other variables constant. All micro-

structures were generated by simulation of coarsening as described in Section 2.1 (for example, Fig. 1 shows two microstruc-
tures with different volume fractions of particles). The particle volume fractions were varied between 0.2 and 0.8. For each
volume fraction, four to six microstructures were selected from the same coarsening simulation at different times in order to
evaluate the variation with average particle size, number of particles and contiguity of particles, while holding volume frac-
tion constant. For each selected microstructure, three different random orientation sets were used for property simulation
and the results were averaged. The results of this section correspond to a ‘‘cube”-oriented single crystal matrix phase.

Fig. 5 shows the average stress and strain-rate plotted against the volume fraction of particles (for a simulation domain
size of 128 � 128 � 128). Also shown are dashed lines that represent the linear fits to the data for both phases. The values at
particle volume fractions of 1.0 and 0.0 (black solid dots) were obtained from simulations on a BCC polycrystal with a
random texture and a FCC single crystal with the ‘‘cube” orientation, respectively, with the other simulation parameters
unchanged. Since we chose four to six different microstructures for each volume category, the spread of the data for each
phase corresponding to a specific volume fraction can be understood as the variation in the average properties due to the
different number of particles, contiguity of particles and etc. Note that the average properties for both phases exhibit an
almost linear dependence on the particle volume fraction with small variance over the most of the range, except for volume
fractions near 0.0 or 1.0, suggesting that different instantiations of the coarsened microstructures lead to negligible variation
in average stress and strain-rate. Also, note that the average stress of the overall composite is within the bounds predicted
from the simple rules of mixtures, rmixture = rpVp + rmVm and rmixture = rprm/(rpVm + rmVp). rp and rm are the average
stresses for the particle phase and the matrix phase obtained from simulations on a random BCC polycrystal and a
‘‘cube”-oriented FCC single crystal as explained before (rp = 2.587 and rm = 1.229, respectively, as black solid dots in the
figure). rmixture is the effective stress of the overall microstructure, and Vp and Vm are the volume fraction of the particles
and the matrix such that Vp + Vm = 1.0.

4.2.2. Effect of morphological change with constant particle volume fraction on stress and strain-rate fields in coarsened
microstructures

During a coarsening simulation, the microstructure evolves such that the number of particles decreases, the average size of
particles increases and the contiguity of particles decreases. The morphological changes of these individual microstructural

Fig. 5. (a) Average stress and (b) average strain-rate as a function of volume fraction for each phase and for overall microstructure computed for uniaxial
tension. The average strain-rate is imposed as a boundary condition so the variation in the two phases with volume fraction is as expected from partitioning
of the strain-rate between the two phases. The values at particle volume fractions of 1.0 and 0.0 (black solid dots) are obtained from simulations on a
polycrystal with BCC grains with a random texture and a FCC single crystal with the cube orientation, respectively. Note that different instantiations at each
volume fraction lead to only minor variations in the outcome, which is most evident at high fractions in the matrix phase. Also, note that average stress in
composite is within the bounds predicted by the simple rules of mixtures.
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features occurring during coarsening are inevitable and are dependent on each other due to the mass conservation condition
imposed in the coarsening simulation (Lee et al., 2007). Having said that, it is of interest to examine the effect of morphological
changes in the microstructures with the same particle volume fraction from a single coarsening simulation run. In fact, one
piece of evidence for such effect can be qualitatively observed from Fig. 5, where there is a spread in the stress and strain-rate
for each phase at each particle volume fraction (especially, 0.7 and 0.8). This motivates a more detailed examination of
these morphological changes in order to quantify the sensitivity of the mechanical response to microstructural variations
other than volume fraction. As the first step towards this goal, two different microstructures (128 � 128 � 128) from a single
coarsening simulation, both with a particle volume fraction of�0.7, were chosen such that one of them has high contiguity of
particles and the other a low one. The two microstructures are shown in Fig. 6.

Note that the microstructure with high contiguity (0.5960, Fig. 6(a)) has a larger number of particles and smaller average
particle size than the one with low contiguity (0.2443, Fig. 6(b)). The macroscopic responses of the two microstructures are
summarized in Table 3. Note that the relative activity of the matrix phase in the microstructure with low contiguity increases
slightly (�7.0%), which results from the more percolating nature of the matrix in the microstructure than the one with high
particle contiguity, such that particles carry more of the load. As is evident from Fig. 5, however, the macroscopic average
stress and average strain-rate in both microstructures are very similar, which implies that the macroscopic average mechan-
ical response is most strongly dependent on the volume fraction of each phase in the microstructure, compared to the other
microstructural parameters.

However, this does not guarantee that local responses of the microstructures to the applied external force are the same.
To extract local information on stress and strain-rate of each phase in the microstructure, one needs to examine the standard
deviations of the local stress and strain-rate for each phase. Fig. 7 shows the cross-sections of the two microstructures with
high particle contiguity, Fig. 7(a), and low particle contiguity, Fig. 7(b), and the corresponding stress fields, Fig. 7(c) and (d).
The results of the stress analysis are summarized in Table 4. As previously mentioned, the macroscopic average stresses of
the two microstructures are nearly the same. Note that the average stress is insensitive to differences in contiguity of par-
ticles. In contrast, the standard deviation in stress of the matrix phase in the microstructure with low particle contiguity is
much larger, by �24%, compared to the one with high particle contiguity, which suggests that the stress field in the matrix
for the low contiguity case has a wider distribution of stress values than the high contiguity case. Nevertheless, the change in
the shape of the stress distribution in the matrix is negligible because the change in the standard deviation in stress in the
matrix phase with the change in particle contiguity is small relative to the corresponding average stress.

The results of the strain-rate field and its standard deviation for each phase in both microstructures are quite different
from those for the stress analysis. The strain-rate fields of the two microstructures are also presented in Fig. 7(e) and (f),

Fig. 6. Microstructures from a single coarsening simulation run with the particle volume fraction of about 0.7 having (a) high contiguity and (b) low
contiguity of particles.

Table 3
Results from the property simulation on both the coarsened microstructures with the same particle volume fraction (�0.7) but having different total number
and contiguity of particles.

Microstructure with high particle contiguity (0.5960) Microstructure with low particle contiguity (0.2443)

Particle Matrix Particle Matrix

# Particles 4998 1002
Volume fraction 0.6974 0.3026 0.6988 0.3012
Macroscopic stress of the composite 2.061 (in a.u.) 2.039 (in a.u.)
Relative activity 0.544 0.456 0.512 0.488
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and the results of the corresponding strain-rate analysis are summarized in Table 5. The figures suggest, qualitatively, that
there are more hot spots in strain-rate in the low contiguity microstructure. While the average strain-rate and its standard
deviation for the particle phase are insensitive to changes in the contiguity between particles, the average strain-rate for the
matrix phase are by �8.4% larger in the microstructure with low contiguity of particles. This tendency is especially obvious
for the standard deviation of strain-rate in the matrix phase in the low particle contiguity microstructure (37.0% increase).

This trend is reasonable because, as the contiguity of particles decreases during coarsening, more complete wetting of
particles by the matrix phase occurs. In other words, coarsening results in a percolating network of well-developed thin ma-
trix channels at particle/particle boundary regions, giving longer paths in space along which the matrix phase can stretch
out, which results in a higher average strain-rate in the matrix phase for the microstructure with the low particle contiguity
and more hot spots in the matrix phase. However, some cold spots are still present locally in the microstructure, when

Fig. 7. Cross-sections of microstructures having (a) high particle contiguity and (b) low particle contiguity in Fig. 6 under uniaxial tension and the
corresponding stress fields ((c) and (d)), and strain-rate fields ((e) and (f)) (each of stress and strain-rate scale bars is shown only once).
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compared to the matrix phase in the high contiguity microstructure, which exhibits a larger standard deviation in strain-
rate. These cold spots are where the matrix is isolated in space, and it is also evident from Fig. 3 and Table 1 that the isolated
matrix grains in the modified polycrystal have lower relative activity than those in the coarsened microstructure. Fig. 7(e)
and (f) shows this trend qualitatively in the maps of strain-rate in the cross-sections of the microstructure.

In Fig. 8, the stress and strain-rate distributions in both phases of the microstructures with different particle contiguities
in Fig. 7 are presented: stress distribution in the particles, Fig. 8(a), stress distribution in the matrix, Fig. 8(b), strain-rate dis-
tribution in the particles, Fig. 8(c), and strain-rate distribution in the matrix, Fig. 8(d). At first glance, the distributions appear
to be very similar between the high contiguity and low contiguity cases. Indeed, for the stress distributions, the average
stress and its standard deviation in the two phases for both cases remain very similar as previously noted in Table 4. Even
though the standard deviation in stress of the matrix phase increases significantly in percentage terms as the particle con-
tiguity decreases, the difference is negligible when compared to its average value. Therefore, the stress is insensitive to vari-
ations in particle contiguity at both macroscopic scale and in terms of local behavior. However, the strain-rate distributions
in the two phases for both cases reveal something interesting. In particular, the matrix phase in the coarsened microstruc-
ture with low contiguity has a wider distribution of strain-rate with a lower maximum peak than that with high contiguity,
Fig. 8(d), whereas the increase in the corresponding average strain-rate is relatively small (8.4%, Table 5). This is also evident
in Table 5 as the drastic increase in the standard deviation of the strain-rate in the matrix phase in the coarsened microstruc-
ture with low particle contiguity (37% increase from high to low contiguity). Fig. 9 shows the differences in the frequencies
between the two coarsened microstructures (as number fractions) for stress and strain-rate in the two phases. The frequency
difference is calculated as fhigh_contiguity � flow_contiguity for each bin. The stress distribution slightly shifts to the right for the
particles with a higher contiguity, Fig. 8(a), while that of the corresponding the matrix phase slightly moves to smaller val-
ues, Fig. 8(b). This is reasonable because the particles with smaller average size will have higher particle contiguity and take
up more stress for fixed particle volume fraction. Fig. 9 also shows that positive values of the frequency difference at larger
stress values are found for the particles whereas the stress distribution of the matrix phase is narrower in the higher particle
contiguity case. Also, note the negative values of the frequency difference at large strain-rates in the matrix phase, which
reveals the drastic increase in standard deviation of strain-rate for the matrix phase in the microstructure with low particle
contiguity.

To see the trend more clearly, the same property simulations were performed on the microstructures that were chosen
from the same coarsening simulation run with particle volume fractions of �0.6, �0.7 and �0.8. The input microstructures
were chosen such that the corresponding contiguity of particles varies approximately from �0.3 to �0.6 for each volume
category. In each phase for all volume categories, only a slight variation is observed in average stress and its standard
deviation as a function of the particle contiguity as previously observed. However, the average strain-rate and its standard
deviation in matrix phase are found to be a strong function of the particle contiguity. The results from the property

Table 4
Results of stress fields from the property simulation on both coarsened microstructures in Fig. 6 with the same particle
volume fraction (�0.7) but different particle contiguities.

Microstructure with high
particle contiguity (0.5960)

Microstructure with low
particle contiguity (0.2443)

Average stress (in a. u.)
Macroscopic 2.061 2.039 (�1.1%)
Particles 2.407 2.367 (�1.7%)
Matrix 1.262 1.278 (+1.3%)

Standard deviation in stress (in a. u.)
Macroscopic 0.611 0.584 (�4.4%)
Particles 0.366 0.354 (�3.3%)
Matrix 0.092 0.114 (+23.9%)

Table 5
Results of strain-rate fields from the property simulation on both coarsened microstructures with the same particle
volume fraction (�0.7, Fig. 6) but having different contiguity of particles.

Microstructure with high
particle contiguity (0.5960)

Microstructure with low
particle contiguity (0.2443)

Average strain-rate (in a. u.)
Macroscopic 1.117 1.127 (+0.9%)
Particles 0.871 0.825 (�5.3%)
Matrix 1.685 1.826 (+8.4%)

Standard deviation in strain-rate (in a. u.)
Macroscopic 0.615 0.754 (�22.6%)
Particles 0.378 0.375 (�0.8%)
Matrix 0.679 0.930 (+37.0%)
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Fig. 8. Stress and strain-rate distributions in both particle ((a) and (c)) and matrix ((b) and (d)) phases of the coarsened microstructures with high particle
contiguity (solid bars) and with low particle contiguity (open bars) in Fig. 7. Note that strain-rate distribution of the matrix phase in the coarsened
microstructure with low particle contiguity has a wider shape, compared to high contiguity case.

Fig. 9. Differences in the frequencies for stress and strain-rate of the two phases in both coarsened microstructures with different particle contiguities are
presented, defined as fhigh_contiguity � flow_contiguity for each bin. Note the negative values of the frequency difference in strain-rate of the matrix phase over the
bins with large values, which highlights the substantial increase in standard deviation of strain-rate for the matrix phase in the microstructure with low
particle contiguity.
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simulations for the particle volume fraction of �0.8 are summarized in Fig. 10 as an example. Note that the standard devi-
ation of strain-rate in the matrix phase is very sensitive to the contiguity of particles and decreases linearly as the particle
contiguity increases.

4.2.3. Effect of morphological change on the stress distribution in particles
In the previous section, we observed that the stress distribution of the particle phase in the composites under uniaxial

tension is weakly dependent on contiguity. This interesting trend prompted an examination of the dependence of the stress
distribution of the particles on their volume fraction. Fig. 11 shows the variation in the stress distribution of the hard BCC
particle phase under uniaxial tension as a function of the particle volume fraction. Also, two more cases are considered and
compared to the results from the composite microstructures: (1) FFT plasticity simulation on a polycrystal under uniaxial
tension, having �2500 BCC grains with random texture, with several different viscoplasticity exponents n = 10, 20, 30 and
40; and (2) rate-insensitive Taylor factor calculation for 643 random orientations with BCC structure under uniaxial defor-
mation. The latter calculation was performed with the commercial OIM™ software package. For composite and BCC poly-
crystal cases, the microstructures with different particle volume fractions were chosen such that the number of particles
was similar (�2000) and, hence, the average size and the contiguity of particles increases as the particle volume fraction in-
creases. Since a threshold resolved shear stress of 1.0 was used for all slip systems of BCC particles during simulations and
assuming that the local Taylor factor in the BCC particles/grains from simulations is equal to local von Mises equivalent stress
divided by the threshold stress, it is sensible to compare the stress distribution in the particles from simulations to that of
Taylor factors of isolated BCC voxels in order to see the effect of the morphology of microstructures and the particle volume
fraction on the stress distribution in the particles. The main result is a drastic but smooth transition of the stress distribution
in the BCC particles with increasing particle volume fraction. At high volume fractions, the distribution tends to be towards
that calculated for the BCC polycrystal. As the particle volume fraction increases, the average stress of the particles increases
as noticed before, which results in the shift of the distribution curve to the right. At the microstructural scale, as the particle
contiguity increases with increasing volume fraction, particles in soft orientations are no longer shielded by the softer matrix
phase and load is transmitted to particles in harder orientations (i.e., at higher stresses). This provides a simple explanation
for the changes in skewness from left to right as the particle volume fraction increases.

However, the distribution of Taylor factors from the 643 isolated BCC voxels is quite different from that of the FFT sim-
ulation on the same voxels in a 64 � 64 � 64 simulation domain. This is because of the effect from the neighbors on the
stress and strain-rate state for each voxel during the FFT simulation. Note that, as n increases, the results from the BCC poly-
crystal case evolve toward to match the distribution of Taylor factors when those 643 voxels are isolated with no neighboring
interactions, such that the frequencies over the bins with both large and small stress values become higher while those over
the intermediate bins get lower.

4.2.4. Single crystal versus polycrystal matrix
Up to this point, the matrix phase has been treated as an FCC single crystal having a single orientation (‘‘cube” orienta-

tion). In reality, however, the matrix phase solidifies after liquid-phase sintering and is polycrystalline, as previously men-
tioned. In this section, we examine the effect of polycrystallinity of matrix on the stress and strain-rate fields under uniaxial
tension.

Fig. 10. Average strain-rate and its standard deviation of both particles and matrix phase in the microstructures from coarsening simulation with particle
volume fraction of �0.8 as a function of contiguity of particles. Note that the standard deviation of strain-rate decreases strongly in a linear fashion in the
matrix with increasing particle contiguity.
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The change in the relative activity of each phase in the coarsened microstructures with a randomly oriented polycrystal-
line matrix is presented in Fig. 12, where the results are compared to those for the ‘‘cube”-oriented single crystal matrix.
Since the ‘‘cube” orientation is a soft orientation in uniaxial tension, it is reasonable that the relative activity in the polycrys-
tal matrix is smaller than that in the single crystal matrix. Given the uniform strain boundary condition used for all property
simulations, this decrease must be compensated by increase in the relative activity in particles. A decrease in the relative
activity of the polycrystal matrix from that of a single crystal matrix is observed consistently across the range of particle
volume fractions.

Fig. 13 shows the stress and strain-rate fields for both the single crystal matrix case, Fig. 13(a) and (c), and the polycrystal
matrix case, Fig. 13(b) and (d), respectively, with particle volume fractions of �0.6. The geometry of the microstructures is
the same for the two cases and so the configuration of particles and matrix is the same. The only difference between two
microstructures is that the one has a single crystal matrix whereas the other one has a polycrystalline matrix. Note that
the gray-scaled color of the stress field is whiter for the polycrystalline matrix case, which corresponds to a higher macro-
scopic average stress. Note also that individual particles have different stress values for the two different matrices; this is
also true for the matrix. The strain-rate field for the polycrystalline matrix case, Fig. 13(d), has fewer hot spots and more
diffuse gray-scaled color than the corresponding field in the single crystal matrix, Fig. 13(c). This suggests that the distribu-
tion of strain-rate is more homogenous in the polycrystalline case.

Figs. 14 and 15 show the first and second moments for the stress and strain-rate fields, comparing the polycrystal matrix
case with the single crystal matrix case. For the composite as a whole, the average stress is substantially higher in the poly-
crystal matrix case whereas the standard deviation in stress is lower for all volume fractions except Vf = 0.2. The average

Fig. 11. Variation in the stress distribution of the hard BCC particles in the composite under uniaxial tension as a function of the particle volume fraction
(vf), compared to two more cases; (1) FFT plasticity simulation on a polycrystal under uniaxial tension, having BCC grains with random texture, with
varying the viscoplasticity exponent n = 10, 20, 30 and 40; and (2) Taylor factor calculation for 643 isolated voxels with BCC structure under uniaxial
deformation, having random orientation. Note that the drastic but smooth transition of the stress distribution in the BCC particles with increasing particle
volume fraction such that it agrees with the simulated stress distributions in the polycrystal with BCC grains as particle volume fraction approached unity.
Also, note that, as n increases, the stress distribution tends to develop the maximum peak at high stress regime, which tends toward the Taylor factor
distribution of isolated voxels.

Fig. 12. The comparison of the relative activity of each phase as a function of volume fraction of particles in coarsened microstructures with either a single
crystal matrix having the cube orientation or a polycrystal matrix having random orientation. Note a consistent decrease in the relative activity of the
polycrystal matrix from that of the single crystal matrix.
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Fig. 13. Stress and strain-rate fields in the microstructures with the particle volume fraction of �0.6. (a) and (c) are stress and strain rated fields from the
simulation on the microstructures with a single crystal matrix with the cube orientation, respectively, and (b) and (d) are stress and strain rated fields from
the microstructures with a polycrystal matrix with random orientation, respectively (the stress fields, (a) and (b), and the strain-rate fields, (c) and (d), were
visualized using the same gray-scale, respectively, even though the scale bars are omitted here). Note that more stress is transferred to the particles due to
the polycrystallinity of the matrix phase, and that the more homogeneous distribution of strain-rate in the microstructures is developed with a
polycrystalline matrix than in that with the single crystal matrix.

Fig. 14. (a) Average stress and (b) its standard deviation of both particles and matrix phase in the microstructures from coarsening simulation as a function
of volume fraction of particles. The microstructures have the same set of particles and either a single crystal matrix with the cube orientation or a
polycrystal matrix with random orientations.
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strain-rate is a boundary condition for the composite as a whole but its standard deviation is appreciably smaller in the poly-
crystal matrix compared to the single crystal matrix. Considering the matrix by itself, both the average stress and the stan-
dard deviation are appreciably higher in the polycrystal matrix. The average stress in the particles and its standard deviation
are also higher in the particles, although the differences between the two matrices vanish at high particle volume fractions.

It is apparent that the heterogeneous polycrystalline matrix more effectively transmits stress between particles, com-
pared to single crystal case. Keeping with the relative activity analysis, Fig. 12, a polycrystalline matrix provides a harder,
more heterogeneous matrix, such that it absorbs a smaller fraction of the imposed strain-rate (smaller average strain-rate
with smaller standard deviation for the polycrystalline matrix). This is similar to the trend in the stress analysis in particles
as a function of contiguity of particles (Table 1 for the ‘‘disordered” microstructure case and Table 4 for coarsening case),
where the average stress in the particles increases as the contiguity of particles increases, albeit only by a small amount.
Again, one can easily see that such particles that have different gray-scaled colors for stress between the two cases, Fig. 13.

5. Concluding remarks

Simulations of the viscoplastic response under uniaxial tension using the Fast Fourier Transform (FFT) algorithm has been
used to describe the fundamental mechanical behavior of metal–metal composite materials. The digital microstructures
were generated using the Monte Carlo simulation of coarsening (Ostwald ripening) (Lee et al., 2007). Specifically, stress
and strain-rate fields were obtained in these composite materials with nearly equiaxed BCC particles in an FCC matrix.
Digital composite materials were devised with a wide range of spatial distributions of particles and hence the different
morphologies of the matrix phase.

Stress is mainly concentrated in the hard particle phase while the soft matrix phase takes up more of the strain-rate
because of the higher threshold resolved shear stress imposed for the particles. The macroscopic response in terms of the
average stress and average strain-rate obeys the simple rule of mixtures. However, the variation in standard deviation in
the strain-rate is less simple, especially at high particle volume fractions, where the contiguity of particles has a noticeable
effect on the mechanical response. This leads to the conclusion that the first moments of the stress and strain-rate are
relatively insensitive to the microstructure under these conditions whereas the second moments of the distributions are
strongly dependent on the microstructure.

The particle volume fraction and the contiguity of particles appear to be the most important microstructural factors that
affect the mechanical behavior, in that average stresses and strain-rates, and their standard deviations for each phase and
overall microstructure increase with both increasing particle volume fraction and with decreasing contiguity of particles
(Chawla et al., 2004; Chawla and Chawla, 2006; Chawla et al., 2006b; Ganesh and Chawla, 2005; Kim, 2004). At a fixed vol-
ume fraction, the mechanical response of composite materials, in terms of average stress and strain-rate under uniaxial ten-
sion, is a strong function of the microstructure type. In particular, more strain-rate is taken up by the percolating, wetting
matrix phase in the coarsened microstructures than by locally isolated matrix grains in ‘‘disordered” polycrystalline micro-
structures. By contrast, the particles in the ‘‘disordered” microstructures sustain more stress than in the coarsened micro-
structure because of the higher particle contiguity in this type of microstructure.

As particle volume fraction approaches unity, the stress distribution in the BCC particles tends towards the simulated
stress distributions expected in a BCC polycrystal. The average stress of the particles increases (shift of the distribution curve
to the right) and particles start to lose the shielding from the softer matrix phase, which shifts the skewness of the stress
distribution from left to right. However, even at the highest volume fractions, the distribution is noticeably different from

Fig. 15. (a) Average strain-rate and (b) its standard deviation of both particles and matrix phase in the microstructures from coarsening simulation as a
function of volume fraction of particles. The microstructures have the same set of particles and either a single crystal matrix with the cube orientation or a
polycrystal matrix with random orientations.
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the distribution of Taylor factors from the 643 isolated BCC voxels because of the effect from the neighbors on the stress and
strain-rate state for each voxel during the FFT simulation. As the viscoplasticity exponent, n, increases, the results from the
FFT simulations on the BCC polycrystal tend towards the distribution of Taylor factors for the same set of orientations under
the Taylor assumption of uniform strain (no interactions between neighboring grains).

The effect of polycrystallinity of the matrix phase on the mechanical response has also been examined. Compared to a
single crystal matrix, a polycrystalline matrix results in: (1) higher stresses both macroscopically and in both phases; (2)
an increase in the average stress and its standard deviation in the matrix phase; and (3) a decrease in the sensitivity to vol-
ume fraction (less variation in stress). In terms of strain-rate, (1) more strain is accommodated in particles while less strain-
rate is taken up by matrix; (2) the average strain-rate and its standard deviation decrease in the matrix phase; and (3) the
sensitivity to volume fraction decreases (less variation in strain-rate). In general, it can be concluded that microstructures
with a polycrystalline matrix are less sensitive to changes in volume fraction, contiguity of particles, and microstructure
type. This trend may be, however, not only a consequence of the polycrystallinity of the matrix in the microstructure, but
also because of the change in texture of the matrix. Therefore, it is also of interest to examine the effect of texture of the
matrix on the mechanical response of the microstructure under uniaxial tension. This will be explored in a future
publication.

Based on the full-field information obtained, it becomes feasible to optimize microstructures for a certain preferred
mechanical performance. For example, if the desired behavior is a more uniform strain-rate in both phases, while minimizing
the difference in average strain-rates in the two phases, one can select the corresponding microstructure with a given par-
ticle volume fraction using Fig. 10. In other words, by varying the microstructural design of the material, a desired distribu-
tion of strain-rate under uniaxial tension can be obtained. The material may be more resistant to failure in the form of local
crack propagation or creep, for example. This is expected to be relevant to the optimization of microstructure in W–Ni–Fe
heavy alloys (Churn and German, 1984), which motivated this investigation.

Even though the simulated microstructures show the characteristics expected from Ostwald ripening in liquid-phase sin-
tering, more microstructural characterizations such as two-point correlation functions (Rollett et al., 2007), particle shape
analysis using a moment analysis (MacSleyne et al., 2008) and spatial distribution of particles using the kth nearest neighbor
analysis (Tong et al., 1999) should be performed on the simulated microstructures. The results could be compared with those
from analysis of the real materials samples in order to verify the quality of the simulated microstructures. The analysis of the
three-dimensional contiguity of particles during coarsening simulations with a fixed solid volume fraction showed a scale-
variant characteristic such that, as the system coarsens, the contiguity of particles decreases. However, it was previously
reported in the two-dimensional experimental study on WC–Co composites (Kim et al., 2008) that the contiguity of WC par-
ticles is scale-invariant with a given particle volume fraction. In other words, the microstructures attain a self-similarity in
terms of the WC particle contiguity when measured in two-dimensional cross-sections. Note however that the WC particles
in the system are highly faceted, in contrast to the approximately equiaxed particles considered in this work. These issues
will be explored in the future.
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